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Abstract. For reconstructing the signal from sampling data, the
method based on Shannon’s Sampling theorem is usually employed.
In this method, the reconstruction error appears when the signal
does not satisfy the Nyquist condition. This paper proposes a new
reconstruction method by using a linear perceptron and multi layer
perceptron as FIR filter. The perceptron which has the weights
obtained by learning in adapting the original signal suppresses the
difference between the reconstructed signal and the original signal
even when the Nyquist condition does not stand. Although the
proposed method needs weight data, the total data size is much
smaller than the ordinary sampling method, as the most suitable
reconstruction filter is exclusively adapted to the given sampling
data.

INTRODUCTION

Currently the method of reconstructing a signal from sampling signals is
applied in various scenes. For reconstruction, a filter based on Shannon’s
Sampling theorem [6] is usually employed. The sampling theorem ensures
complete reconstruction of a signal from sampled points whenever the Nyquist
condition is satisfied. Violation of the Nyquist condition will cause aliasing
phenomena, making it impossible to extract the frequency components that
are needed to reconstruct the signal.

In the case of a musical Compact Disc(CD), the CD contains digital data
obtained by sampling a particular musical signal. The sampling frequency is
set to 44.1 kHz, considering that human audition is not sensitive to sound
components that exceed 22 kHz.

Clearly there is a trade-off between the numbers of the sampling points,
which is proportional to the sampling frequency and the high frequency com-



ponents that can be reconstructed from those sample points, which influence
the quality of the reconstructed signal.

In this paper, we propose a method of signal reconstruction using an
adaptive signal reconstruction filter that is implemented through a neural
network. The objective of our research is to reconstruct the signal even if it
includes frequency components exceeding the Nyquist frequency.

There are some studies that have similar objectives with ours.
Candocia, et al.[2], proposed a method for obtaining a high-resolution

image from its low-resolution counterpart, which is called “Super-resolution”.
In this method, the given low-resolution image is clustered into a number of
classes, in which sub images with similar local information are grouped as a
class. Each class will be linked to a pretrained neural network called linear
associative memory(LAM) for reconstructing high resolution image based on
the particular characteristic of the class. This method uses a group of neural
networks that can be used for general images, while our method uses a neural
network that is specialized to a specific data.

Ohira, et al.[5], proposed a reconstruction filter for high quality image
enlargement, establishing a unique sampling function. Although both of this
study and ours have similarity in generating a reconstruction filter, it differs
from ours because it does not deal with missing sample points.

Katagishi, et al. [3] proposed a method for a unique sampling function for
reconstruction filter. This study can be distinguished from ours, because in
our research, we propose a method for generating an adaptive reconstruction
filter that adaptively matches with the given sample points.

A method using Neural Network as FIR filter was proposed [4], in which
the neural network predicts the length of the input points that should be
used, which differs from ours in its objective.

In [1], a method of utilizing neural networks for images compression is
proposed. The main difference of this research from ours is that, in our
proposed research, the neural network is used for retrieving omitted sample
point, so that the retrieved data satisfy the Nyquist condition for the original
signal.

This paper is organized as follows. In Section 2 the formalization of the
problem is explained. Section 3 explains the training of the neural network
that can be utilized as a discrete time domain fτ (t).

PROBLEM DEFINITION

The signal treated in this paper is illustrated in Figure 1. Suppose the original
signal f(t) satisfies the following condition:

F (ω)
�= 0 (|ω| ≤ W )
= 0 otherwise

where F (ω) is the Fourier Transformation of the original signal f(t), and W
is the Nyquist frequency of signal f(t).



Figure 1: Sampling and Data Reduction

f(t) is sampled with the sampling frequency of 1
τ as,

2π

τ
≥ W, (1)

so that we get sampled data fτ (t) as

fτ (t) =
∞∑

n=0

δ(t − nτ)f(t),

δ(t − nτ) =
{

1 (t = nτ)
0 otherwise.

(2)

For the purpose of data reduction, we define the sampled data fT (t) as,

fT (t) =
{

fτ (t) t = mT (m = 0, 1, 2, · · ·)
0 otherwise

, (3)

where

T = Nτ (N > 1, N : integer). (4)

fT will be stored as the sampled data, and used for the reconstruction of
the original signal fτ in the discrete time domain.

Our problem is to obtain a filter implemented with a neural network to
reconstruct fτ from fT , in case that T and τ are defined as follows:

2π

τ
≥ W, (5)

2π

T
< W. (6)

f(t) can be always reconstructed from fτ (t) because the condition (1) is
satisfied. However fτ (t) can not be reconstructed from fT as 2π

T does not
always satisfy the Nyquist condition. (If 2π

T satisfies the Nyquist condition,
the FIR filter shown in Figure 2 can reconstruct fτ completely.)



Figure 2: Reconstruction FIR Filter based on the Sampling theorem

NEURAL NETWORK AS RECONSTRUCTION FILTER

Transversal-type Perceptron is utilized as the filter to reconstruct fτ from
fT shown in (3) and (4). We investigated the reconstructing method with
linear perceptron and a Multilayer Perceptron (MLP) with non-linear hidden
neurons.

Figure 3 shows the linear single layer perceptron. We expect that the
data on the omitted sampling points can be constructed as follows:

Oout(mτ) =
L∑

k=−L

WkfT [(m + k)τ ] (7)

In the case of MLP with one middle layer, the reconstruction can be written
as follows,

Oout(mτ) =
nmid∑
i=1

WiO
i(mτ)

Oi(mτ) = g(
L∑

j=−L

VjifT [(m + j)τ ]) (8)

g(x) =
1

1 + exp(−x)

where Wk, Vjk are the connection weight between the k-th neuron in the
middle layer and the output neuron, and the connection weight between the
j-th input neuron and the k-th neuron in the middle layer, respectively. Oi is
the output of the i-th middle neuron, while Oout is the output of the neural
network.

The weights of the neural network should be corrected as to minimize the
energy function E as follows,

E(t) =
1
2
(Oout(m + t) − fτ (m + t))2, (9)



Figure 3: Linear Perceptron For Reconstruction

in which E(t) is the error at the t-th training iteration. We utilize backprop-
agation training method. In the case of the linear perceptron,

W (t + 1) = W (t) − η
∂E(t)
∂W (t)

, (10)

and in the case of MLP,

W (t + 1) = W (t) − η
∂E(t)
∂W (t)

(11)

V (t + 1) = V (t) − η
∂E(t)
∂V (t)

, (12)

where W (t) and V (t) are the weight vectors of the perceptron after the t-th
training.

Table 1: Parameter settings for Experiments

Parameters Experiment 1 Experiment 2
original signal 0.1sec music signal

T nτ (n = 2, 4, 6, 8) nτ (n = 4, 6, 8)
τ 1/44.1msec

input layer hidden layer input layer

number of
linear per-
ceptron 101 0 31 - 1501

units MLP 101 10 —

EXPERIMENTS

In these experiments a musical signal with a length of 0.1 sec was used.
Utilizing the proposed neural network, we attempt to reconstruct the full



 

Figure 4: Error of reconstruction to some sampling interval

sample point data (the musical data sampled at 44.1 kHz), from the reduced
sample point (with the sampling frequency of ωs = 44.1

N kHz, (N > 1)).
The reconstructions from the reduced sample were done by using the

linear perceptron and MLP. For comparison, we also reconstruct the data
utilizing FIR with sinc function response as follows,

f̂(ατ) =
L∑

j=−L

fT ((α − j)τ)
sin(2π Ω

2 jτ)
2π Ω

2 jτ
(13)

α = 0, 1, 2, · · ·

where f̂ indicates the reconstructed signal, and L is set to 1000 in the exper-
iment.

The error RE between the original and reconstructed signal is calculated
as follows,

RE =
∑Ndata

α=1 (f̂(ατ) − fτ (ατ))2

Ndata
(14)

In experiment 1, we compared the performance of the linear perceptron,
MLP and the conventional FIR filter. Figure 4 shows the performance of
respective reconstruction methods. “cut off ωs/2” and “cut off 22.5kHz”
indicates the reconstruction error of f̂ when Ω = ωs, and Ω = 44.1kHz,
respectively where ωs = 2π/T . The result in Figure 4 shows that the neural
network performed better.

In experiment 2, we reconstructed the signal with the proposed perceptron
with regard to various numbers of input units when the sampling intervals
were 4

44.1 msec, 6
44.1 msec and 8

44.1 msec, respectively. Figure 5 shows the
performance of the linear perceptron. The performance of MLP is almost
equivalent to the linear perceptron as in experiment 1. The arrows in this



 

Figure 5: Reconstruction Error to the number of input units of linear perceptron

figure show the error of the FIR filter (Ω = 44.1kHz) with the same input
data. It is also shown that the performance of the proposed neural network
is better. For example, the proposed neural network trained with the data
sampled at 8

44.1msec interval, performs better than the FIR filter with input
data sampled at 4

44.1 msec, implying that the neural network only requires
half the data to reconstruct the signal compared with the FIR. The parameter
settings for both of the experiments are shown in Table 1.

Performance of Linear Perceptron and MLP

We expected the MLP to perform better than the linear perceptron, because
the MLP has the ability to emulate non-linear functions, while the linear
perceptron can only express linear functions. But experimental results in
Figure 4 shows that MLP is not superior compared with the linear perceptron,
in case of musical signal used in these experiments.

The performance parity between the linear perceptron and MLP can be

Figure 6: Distribution of T = 2τ Figure 7: Distribution of T = 6τ



Figure 8: Distribution of non-linear data

explained by observing the distribution of sample data of musical signals.
When the reconstruction with the perceptron with T

τ + 1 input units is at-
tempted, it arises that the input signal and the target signal can be written
for the intermediate omitted sampling point (n + 1

2 )T as follows:
{

input
(
fT (nT ), 0, 0, · · · , 0, fT [(n + 1)T ]

)
target fτ [(n + 1

2 )T ] (n = 0, 1, 2, · · ·). (15)

Then, if
(
fT (nT ), fT [(n + 1)T ], f [(n + 1

2 )T ]
)

are distributed around a linear
plane with little insignificant variance, it is expected that the linear percep-
tron works well. Figures 6 and 7 shows the distribution of the sample points,
when the sampling intervals are T = 2τ and T = 6τ (τ is the sampling
interval that fulfills the Nyquist condition).

It is clear in Figure 6 that for T = 2τ that the samples are linearly dis-
tributed. Although as the sampling becomes sparse the variance becomes
larger, the musical signal seems to be linearly predictable. This characteris-
tics explains the performance parity between the linear perceptron and the
MLP.

Although we assume that it is sufficient to utilize a linear perceptron
to reconstruct such a signal, we may encounter data which are arbitrarily
distributed. We tested the performance of MLP with artificially generated
non-linear data as shown in Figure 8. The performance comparison between
the MLP and the linear perceptron is shown in Table 2. It is clear that the
MLP performs better compared with the linear perceptron with regard to
non-linear data.

CONCLUSION

We have proposed a method of utilizing a neural network to deal with sparse
data sampling that does not satisfy the Nyquist condition for signal recon-
struction. The qualitative and quantitative performance evaluations show
that the proposed method is better than the conventional FIR filter. For



Table 2: Result of Additional Experiment

MLP Linear Perceptron
error 2.0 × 10−5 1.8 × 10−3

example, a perceptron which has 31 input units can reconstruct the 44.1kHz-
sampled data from the 5.52kHz-sampled data with less reconstruction error
comparing the FIR filter reconstructing from 11.025kHz-sampled data as in
Figure 5. As the length of the data is 0.1sec, the perceptron uses only 552+31
data units while the FIR filter uses 1102 data units for this reconstruction.
We can draw the conclusion that with the proposed method, the size of the
data can be compressed to 50% of the original data size. The propose method
can be considered as a novel method for data reduction.

In the future, the proposed reconstruction method will be introduced
to various applications, such as super-resolution imaging and super audio.
Another possibility is to combine the proposed method with existing data
compression methods such as MP3 and ATRAC.
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