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Abstract For reconstructing a signal from sampling data, the method based on the Shannon’s sampling

theorem is usually employed. In this method, the reconstruction error appears when the signal does

not satisfy the Nyquist condition. This paper proposes a new reconstruction method by using a linear

perceptron and a multilayer perceptron as the FIR filter. The perceptron which has weights obtained by

learning through adapting the original signal suppresses the difference between the reconstructed signal and

the original signal even when the Nyquist condition does not stand. Although the proposed method needs

weight data for reconstruction, the total data size can be much smaller than with the ordinary sampling

method as the most suitable reconstruction filter is exclusively adapted to the given sampling data.
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1. Introduction

Currently, the method of reconstructing a signal
from sampling signals is applied in various situations.
For reconstruction, a filter based on Shannon’s sam-
pling theorem [1] is usually employed. The sampling
theorem ensures complete reconstruction of a signal
from sampled points whenever the Nyquist condition
is satisfied. Violation of the Nyquist condition will
result in aliasing phenomena, making it impossible to
extract the frequency components that are necessary
to reconstruct the signal.

There is a trade-off between the sampling fre-
quency and the high frequency components that can
be reconstructed, which influences the quality of the
reconstructed signal.

In the case of a musical compact disc(CD), the
sampling frequency is set to 44.1 kHz, considering that
human audition is not sensitive to frequency compo-
nents that exceed 22 kHz.

In this paper, we propose a method of signal re-
construction using an adaptive signal reconstruction
filter that is implemented with a neural network. The
neural network is used to estimate data located at
the intermediate points between two existing samples.
In general, a trained neural network is required to

have a generalization ability, but in our study the
neural network is trained specifically to reconstruct
a particular signal. therefore, in addition to the sam-
ple data, the weights of the neural network have to
be provided in the reconstruction process. Conse-
quently, the necessary data size for reconstruction
with our method is greater than that for reconstruc-
tion with the conventional low-pass filtering method.
However, it is expected that the proposed method will
have less reconstruction error than the conventional
low-pass filtering method, because the conventional
method applies minimum assumptions to the signal to
be reconstructed, such as the limitation of frequency
band width, while the proposed method is specifically
trained to reconstruct that signal. Therefore, the pro-
posed method is expected to reduce the total data size
in order to reconstruct signal with the same fidelity as
the conventional method.

There are some studies that have adopted objec-
tives similar to ours.

Candocia, and Principe[2][3] proposed a method
for obtaining a high-resolution image from its
low-resolution counterpart, which is called “super-
resolution”. In this method, the given low-resolution
image is clustered into a number of classes, in which
subimages with similar local information are grouped
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as a class. Each class is then linked to a pre-
trained neural network called linear associative mem-
ory (LAM) for the reconstructon of a high-resolution
image based on the particular characteristic of the
class. This method uses a group of neural networks
that can be used for general images, while our method
uses a neural network that is customized to specific
data.

Ohira, et al.[4], proposed a reconstruction filter for
high-quality image enlargement, establishing a unique
sampling function. Although this study and ours have
similar objective in generating a reconstruction filter,
it differs from ours because it does not deal with miss-
ing sample points.

Iwaki, et al. [5], Katagishi, et al. [6], Toraichi, et
al. [7], Kamada, et al. [8] proposed a method for a
unique sampling function for a reconstruction filter.
These studies can be distinguished from ours, because
in our research, we propose a method for generating a
reconstruction filter that adaptively matches the given
signal.

A method using a neural network as the FIR filter
was proposed [9] in which the neural network predicts
the length of the input points that should be used,
which differs from ours in its objective.

In [10], a method of utilizing neural networks for
image compression is proposed. The main difference
between this research and ours is that, in our pro-
posed research the neural network is used for retriev-
ing omitted sample point data, so that the retrieved
data satisfy the Nyquist condition for the original sig-
nal.

This paper is organized as follows. In Section 2 the
formalization of the problem is explained. Section 3
explains the reconstruction using the neural network.
Some typical experimental results are given and dis-
cussed in Section 4. The conclusions are given in the
final section.

2. Problem Definition

The signal treated in this paper is illustrated in
Figure 1. Suppose the original signal f(t) satisfies the
following condition:

F (ω)
{ �= 0 (|ω| < W )

= 0 otherwise
(1)

where F (ω) is the Fourier transform of the original
signal f(t), and W/π is the Nyquist frequency of signal
f(t).

f(t) is sampled with the sampling frequency of 1/τ
as

1
τ
≥ W

π
(2)

Figure 1: Sampling and data reduction

−

Figure 2: Reconstruction FIR filter based on the sam-
pling theorem

so that we obtain sampled data fτ (t) as

fτ (t) =
∞∑

n=0

δ(t − nτ)f(t)

δ(t − nτ) =
{

1 (t = nτ)
0 otherwise

(3)

For the purpose of data reduction, we define the
sampled data fT (t) as

fT (t) =
{

fτ (t) t = mT (m = 0, 1, 2, · · ·)
0 otherwise

(4)

where

T = Nτ (N > 1, N : integer) (5)

fT will be stored as the sampled data, and used
for the reconstruction of the original signal fτ in the
discrete time domain.

Our problem is to obtain a filter implemented with
a neural network to reconstruct fτ from fT , in the case
that T and τ are defined as follows:

1
τ
≥ W

π
(6)

1
T

<
W

π
(7)
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Figure 3: Reconstruction architecture with neural net-
work (When mτ �= NT , the toggle switch is connected
to P, and when mτ = NT , it is connected to D.)

The neural network is customized for reconstructing a
particular signal.

f(t) can always be reconstructed from fτ (t) be-
cause the condition (2) is satisfied. However, fτ (t) can
not be reconstructed from fT (t) because (7) holds. (If
(7) does not hold, the FIR filter shown in Figure 2 can
reconstruct fτ (t) completely.)

3. Neural Network as a Reconstruction
Filter

Because fT (NT ) = fτ (NT ) (N = 0, 1, 2, · · ·)
are already available, they do not have to be recon-
structed. Hence, we only reconstruct fτ (mτ) (m =
0, 1, 2, · · ·) by the neural network in the case of mτ �=
NT (Figure 3). It is possible to reconstruct fτ (mτ)
by the proposed method when mτ = NT . Then, the
performance of the reconstruction is maintained when
the linear perceptron is used as a reconstruction filter,
but it decreases when a multilayer perceptron (MLP)
is used.

When mτ �= NT , the transversal-type perceptron
which has been trained for reconstruction fτ from fT

is utilized as the filter. We investigated the recon-
structing method with a linear perceptron (adaptive
linear filter) and MLP with nonlinear hidden units, as
shown in Figure 4.

The output of the linear perceptron which has 2L+
1 input units is as follow:

Oout(mτ) =
L∑

k=−L

ωkfT [(m − k)τ ] (8)

where ωk is the connection weight between the (L −
k + 1)-th input unit and the output unit.

The output of MLP with one hidden layer is as

Figure 4: Multilayer perceptron for reconstruction
(Ok(mτ) is the output of k-th hidden unit.)

follows:

Oout(mτ) =
nhid∑
k=1

WkOk(mτ)

Ok(mτ) = g(
L∑

j=−L

VjkfT [(m − j)τ ]) (9)

g(x) =
1

1 + exp(−βx)

where Wk and Vjk are the connection weights between
the k-th unit in the hidden layer and the output unit,
and the connection weights between the j-th input
unit and the k-th unit in the hidden layer, respectively.
nhid is the number of hidden units. β is a positive
constant. Ok is the output of the k-th hidden unit,
while Oout is the output of the neural network.

For adapting the neural network to the signal, the
weights of the neural network should be corrected so
as to minimize the energy function E as follows:

E(ti) =
{

1
2 (Oout(tiτ) − fτ (tiτ))2 (tiτ �= NT )
0 (tiτ = NT ) (10)

in which E(ti) is the error at the ti-th training itera-
tion. We utilize the steepest descent method. Hence,
in the case of the linear perceptron, the connection
weights are corrected as follows:

ωk(ti + 1) = ωk(ti) − η
∂E(ti)
∂ωk(ti)

(11)

and in the case of MLP, they are corrected as follows:

Wk(ti + 1) = Wk(ti) − η
∂E(ti)
∂Wk(ti)

(12)

Vjk(ti + 1) = Vjk(ti) − η
∂E(ti)
∂Vjk(ti)

(13)
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Table 1: Parameter settings for experiment 1
Parameter Value

original signal 0.1sec musical signals
T nτ (n = 2, 4, 6, 8)
τ 1/44.1msec

number of input units 101

Table 2: Parameter settings for experiment 2
Parameter Value

original signal 0.1sec musical signal
T nτ (n = 4, 6, 8)
τ 1/44.1msec

number of input units 31-1501

where ωk(ti), Wk(ti) and Vjk(ti) are the connection
weights of the neural network after ti-th training.

It is expected that fτ (mτ) can be approximated
by Oout(mτ).

4. Experiments

In the experiments, two musical signals with a
length of 0.1 sec were used. We call them ‘Sample
1’ and ‘Sample 2’. The performance of the proposed
method for reconstructing longer signal is explained
in Section 4.5. Utilizing the proposed neural network,
we attempt to reconstruct the full sample data (the
musical data sampled at 44.1 kHz) from the reduced
sample points (with the sampling frequency of 44.1/N
kHz, (N > 1)).

The reconstructions from the reduced sample were
carried out by using the linear perceptron and MLP.
For comparison, we also reconstructed the data utiliz-
ing FIR with the sinc response function as follows:

f̂(ατ) =
1000∑

j=−1000

fT ((α − j)τ)
sin Ω

2 jτ
Ω
2 jτ

(14)

where f̂ and Ω indicate the reconstructed signal and
the cutoff frequency, respectively. For the experi-
ments, the data in the range of 1000 < α < 3000
are used.

In training the neural network, β in (9) is set to 5
and η in (13) is annealed from 0.1 to 0.00001.

The error RE between the original and recon-
structed signals is calculated as follows:

RE =
1

Ndata

∑
α

(f̂(ατ) − fτ (ατ))2 (15)

where Ndata is the number of reconstructed data that
is the actual sample number of the reconstructed sig-

Figure 5: Reconstruction error of the linear percep-
tron vs sampling interval

nal. For example, if the length and the sampling fre-
quency of a reconstructed signal are just 1 sec and
44.1 kHz, respectively, Ndata is 44100. Values of fτ

and fT are normalized into the range of [-1,1].

4.1 Performance of Linear Perceptron

We compared the performance of the proposed lin-
ear perceptron with that of the conventional FIR filter
(14).

Figure 5 shows the performance of the respective
reconstruction methods. The parameter settings are
shown in Table 1. ‘cutoff ωs/2’ and ‘cutoff 22.05kHz’
indicate the reconstruction error of f̂ when Ω = ωs

and Ω/2π = 44.1kHz, respectively, where ωs = 2π/T .
The result in Figure 5 shows that the linear perceptron
performed better.

In experiment 2, we reconstructed the signal with
the linear perceptron with regard to various numbers
of input units when the sampling intervals were 4/44.1
msec, 6/44.1 msec and 8/44.1 msec.

Figure 6 shows the result of the experiment. The
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Figure 6: Reconstruction error vs the number of input
units of the linear perceptron

arrows in this figure show the error of the conventional
FIR filter (Ω = ωs) with the same input data. It is
shown that even if the linear perceptron has only 31
input units, it performs better than the conventional
FIR filter, and the error decreases as the number of
input units increases.

4.2 Performance of MLP

We compared the performances of MLP and the
linear perceptron. In the experiment below, MLPs
with fixed input units of 101 and 10, 20 and 40 hid-
den units were used, and the other parameter settings
are the same as those of experiment 1. In Figure 7,
the numbers inside the brackets show the respective
unit numbers in the MLP’s input, hidden and output
layers.

Figure 7 shows that the reconstruction error of
MLP is less than that of the linear perceptron, and
the error decreases as the number of hidden units of
MLP increases.

4.3 Estimation of Data Compression Rate

In the previous subsection, we did not consider the
amount of data necessary for reconstruction. Because
in the proposed method the weights of the neural net-
work are required in addition to the sampled data fT

for reconstruction, we have to analyze the relation be-
tween the amount of data and the reconstruction fi-
delity in order to compare the performances of the
proposed method and the conventional low-pass fil-
tering method.

Because fT

(
[m + N(T

τ )]τ
)

= 0 (mτ �= NT ), in the
case of the linear perceptron, the values of ω±n T

τ
(n =

0, 1, 2, · · ·) are not required, and in the case of MLP,

Figure 7: Reconstruction error of MLP vs sampling
interval.

the values of V±n T
τ i (n = 0, 1, 2, · · · ; i = 0, 1, · · · , nhid)

are not required. Therefore, in the case of the linear
perceptron, the number of weight data required for
reconstruction is as follow:

2L −
[

L − r

(T/τ)
× 2

]
(16)

and in the case of MLP, it is as follow:
(

2L −
[

L − r

(T/τ)
× 2

]
+ 1

)
× nhid (17)

where 2L+1 is the number of input units of the neural
network, r is the remainder of the division of L with
T/τ , and nhid is the number of hidden units of MLP.
The sum of the number of sample points of fT and (16)
or (17) is called ‘data size’ in the following discussions.

Figure 8 shows the relation between the data size
and the reconstruction error.

Figure 8 shows the superiority of the linear per-
ceptron to the conventional FIR filter with regard to
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Figure 8: The reconstruction error vs data size

the data size (compression rate) and the reconstruc-
tion quality. The linear perceptron requires a smaller
number of data than the conventional FIR filter to re-
construct a signal with similar fidelity. For example,
the linear perceptron which has only 31 input units
can reconstruct the 44.1kHz-sampled data from the
5.52kHz-sampled data with approximately the same
reconstruction error as the FIR filter has for recon-
structing the signal from the 11.025kHz-sampled data,
as shown in Figure 6. In this case, the data size for
the linear perceptron is 552 + 24, while the FIR filter
requires 1102 data units.

In the experiment, MLP may seem to be inferior
to the linear perceptron as shown in Figure 8, but
the error of the linear perceptron cannot be less than
that of MLP even if the linear perceptron has a large
number of input units as shown in Figures 6 and 7.

4.4 Data Structure

When the reconstruction with the perceptron
which has 2L + 1 input units is carried out, the input
signal and the target signal can be written as follows:



input
(
fT [(m + L)τ ], fT [(m + L − 1)τ ], · · · ,

fT [(m − L + 1)τ ], fT [(m − L)τ ]
)

target fτ (mτ)
(18)

(m = L, L + 1, L + 2, · · ·)

Therefore, a training sample can be expressed as a
point in (2L + 2)-dimensional space as

(
fT [(m + L)τ ], fT [(m + L − 1)τ ], · · · ,

fT [(m − L + 1)τ ], fT [(m − L)τ)], fτ (mτ)
) (19)

Consider a case of reconstructing the data at mT + T
2

from the sampled data at mT and (m + 1)T . Then
the number of inputs is T

τ + 1, assuming that T
τ is an

Figure 9: Distribution of nonlinear data (T = 2τ)

Table 3: Reconstruction error from Fig. 9 data
L.P. MLP

hidden
units — 5 10
error 3.36 × 10−3 1.1 × 10−5 2.0 × 10−6

even number, and (19) can be rewritten as follows,
(
fT (mT ), 0, 0, · · · , 0, 0, fT [(m + 1)T ], fτ(mT + T

2 )
)

(m = L, L + 1, L + 2, · · ·)
(20)

which defines essentially three-dimensional space as
(

fT (mT ), fT [(m + 1)T ], fτ(mT +
T

2
)
)

(21)

Thus, for the above training point, the neu-
ral network has to provide a mapping from
(fT (mT ), fT [(m + 1)T ]) to fτ (mT + T

2 ).
We have confirmed that for some cases the MLP

can achieve significantly better compression rates than
the linear perceptron.

Table 3 shows that when the signal is plotted ac-
cording to (21) as shown in Figure 9, the reconstruc-
tion error of MLP is significantly less than that of the
linear perceptron. Then, the data compression rate of
MLP is clearly superior to the linear perceptron.

The plots of the musical signal discribed in Section
4 according to (21) are shown in Figures 10 and 11.
In these cases, sample points are distributed around
a linear plane perturbed by random noises. Because
to some extent the distribution’s linearity can be as-
sumed in this example, the linear perceptron works
well.
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Figure 10: Distributions of samples which are used for
experiments (T = 2τ)

4.5 Performance on Longer Data

In the previous subsections, we have investigated
the characteristic of the musical signals sampled with
various intervals and the performance of the proposed
model. With consideration of putting the proposed
model into practical usage, we also tested the proposed
model with longer musical signals. We used twenty-
one 0.1 sec signals, three 1 min signals, and a 3 min
signal. The 1min signals were obtained by dividing the
3 min signal into three, and from each of these, seven
0.1 sec signals are taken randomly. The parameter
settings for the experiment are given in Table 4. The
weights of the neural network are fixed as trained ones
during the signal reconstruction process.

The average performances of the proposed model
regarding the musical signals with three different

Figure 11: Distributions of samples which are used for
experiments (T = 6τ)

lengths are shown in Figure 12. It is obvious that
the proposed model performs significantly better than
the conventional FIR filter. The reconstruction error
of the average of the 0.1 sec signals and that of the 3
min signal are almost the same. It is expected that
as the signal length becomes longer, the reconstruc-
tion error increases because the number of data sets
increases.

5. Conclusion

We have proposed an adaptive signal reconstruc-
tion filter which uses a neural network to deal with
sparse data sampling that does not satisfy the Nyquist
condition. The qualitative and quantitative perfor-
mance evaluations show that the proposed method
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Table 4: Parameter settings for the experiment in Sec-
tion 4.5

Parameter Value
original 0.1 sec, 1 min, and 3 min
signal musical signal

T 4τ
τ 1/44.1 msec

number of input units 101

Figure 12: Reconstruction error vs length of signal

is better than the conventional low-pass filtering
method.

Our future work is to examine the performance
of the proposed method with respect to the spectral
structure, dynamic range and stationarity of the tar-
get signal. Although we used a simple linear percep-
tron and a three-layer perceptron in the experiments,
the required complexity of the neural network is an-
other future work. We expect that the proposed re-
construction method will be introduced to various ap-
plications, such as super-resolution imaging and super
audio. Another possibility is to combine the proposed
method with existing data compression methods such
as MP3 and ATRAC.
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